207 research outputs found

    Fair resource allocation with interference mitigation and resource reuse for LTE/LTE-A femtocell networks

    Get PDF
    Joint consideration of interference, resource utilization, fairness, and complexity issues is generally lacking in existing resource allocation schemes for Long-Term Evolution (LTE)/LTE-Advanced femtocell networks. To tackle this, we employ a hybrid spectrum allocation approach whereby the spectrum is split between the macrocell and its nearby interfering femtocells based on their resource demands, whereas the distant femtocells share the entire spectrum. A multiobjective problem is formulated for resource allocation between femtocells and is decomposed using a lexicographic optimization approach into two subproblems. A greedy algorithm of reasonably low complexity is proposed to solve these subproblems sequentially. Simulation results show that the proposed scheme achieves substantial throughput and packet loss improvements in low-density femtocell deployment scenarios while performing satisfactorily in high-density femtocell deployment scenarios with substantial complexity and overhead reduction. The proposed scheme also performs nearly as well as the optimal solution obtained by exhaustive search

    Multi-objective resource allocation for LTE/LTE-A femtocell/HeNB networks using ant colony optimization

    Get PDF
    Existing femtocell resource allocation schemes for Long Term Evolution or LTE-Advanced femtocell networks do not jointly achieve efficient resource utilization, fairness guarantee, interference mitigation and reduced complexity in a satisfactory manner. In this paper, a multi-objective resource allocation scheme is proposed to achieve these desired features simultaneously. We first formulate three objective functions to respectively maximize resource utilization efficiency, guarantee a high degree of fairness and minimize interference. A weighted sum approach is then used to combine these objective functions to form a single multi-objective optimization problem. An ant colony optimization algorithm is employed to find the Pareto-optimal solution to this problem. Simulation results demonstrate that the proposed scheme performs jointly well in all aspects, namely resource utilization, fairness and interference mitigation. Additionally, it maintains satisfactory performance in the handover process and has a reasonably low complexity compared to the existing schemes

    Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel

    Get PDF
    In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods

    Sustainable Engineering higher education in Oman-lessons learned from the pandemic (COVID-19), improvements, and suggestions in the teaching, learning and administrative framework

    Get PDF
    This research study has investigated the challenges faced due to the pandemic (COVID-19). This paper further provides recommendations that can be adopted by academics, learners, and administrators to make the education system more robust and sustainable. The impact of the COVID-19 pandemic can be felt in various fields across the world including higher education. The closure of face-to-face (FtF) learning in educational institutions worldwide has impacted over 95% of the world's student population. Therefore, in wake of this, many institutions have quickly adopted to offer complete online teaching and learning in a very short period. However, such a quick transition has raised several challenges. 1) What are the challenges encountered by academics and their readiness to adapt to the rapid remote learning transition? 2) What are the challenges encountered by learners (students), and their readiness to adapt to the rapid remote learning transition? 3) What are the recommendations for strategic planners or high-level administrators in institutions to tackle such pandemic risks effectively in the future? To address research questions mixed methods are used. A qualitativequestionnaire survey is framed by an extensive literature review to understand the perceptions of academics and learners. A total of (n=525) academician samples and (n= 1460) student samples have been collected. The academic and learner's perceptions are analyzed by estimating the Pearson correlation coefficients. The mean and SD values based on academic rank stood at 3.01±0.96, and by experience stood at 2.96±0.98. Similarly, learner's perceptions stood at 2.67±0.95

    The Role of Medical Image Modalities and AI in the Early Detection, Diagnosis and Grading of Retinal Diseases: A Survey.

    Get PDF
    Traditional dilated ophthalmoscopy can reveal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), diabetic macular edema (DME), retinal tear, epiretinal membrane, macular hole, retinal detachment, retinitis pigmentosa, retinal vein occlusion (RVO), and retinal artery occlusion (RAO). Among these diseases, AMD and DR are the major causes of progressive vision loss, while the latter is recognized as a world-wide epidemic. Advances in retinal imaging have improved the diagnosis and management of DR and AMD. In this review article, we focus on the variable imaging modalities for accurate diagnosis, early detection, and staging of both AMD and DR. In addition, the role of artificial intelligence (AI) in providing automated detection, diagnosis, and staging of these diseases will be surveyed. Furthermore, current works are summarized and discussed. Finally, projected future trends are outlined. The work done on this survey indicates the effective role of AI in the early detection, diagnosis, and staging of DR and/or AMD. In the future, more AI solutions will be presented that hold promise for clinical applications

    Computer Aided Autism Diagnosis Using Diffusion Tensor Imaging

    Get PDF
    © 2013 IEEE. Autism Spectrum Disorder (ASD), commonly known as autism, is a lifelong developmental disorder associated with a broad range of symptoms including difficulties in social interaction, communication skills, and restricted and repetitive behaviors. In autism spectrum disorder, numerous studies suggest abnormal development of neural networks that manifest itself as abnormalities of brain shape, functionality, and/ or connectivity. The aim of this work is to present our automated computer aided diagnostic (CAD) system for accurate identification of autism spectrum disorder based on the connectivity of the white matter (WM) tracts. To achieve this goal, two levels of analysis are provided for local and global scores using diffusion tensor imaging (DTI) data. A local analysis using the Johns Hopkins WM atlas is exploited for DTI atlas-based segmentation. Furthermore, WM integrity is examined by extracting the most notable features representing WM connectivity from DTI. Interactions of WM features between different areas in the brain, demonstrating correlations between WM areas were used, and feature selection among those associations were made. Finally, a leave-one-subject-out classifier is employed to yield a final per-subject decision. The proposed system was tested on a large dataset of 263 subjects from the National Database of Autism Research (NDAR) with their Autism Diagnostic Observation Schedule (ADOS) scores and diagnosis (139 typically developed: 66 males, and 73 females, and 124 autistics: 66 males, and 58 females), with ages ranging from 96 to 215 months, achieving an overall accuracy of 73%. In addition to this achieved global accuracy, diagnostically-important brain areas were identified, allowing for a better understanding of ASD-related brain abnormalities, which is considered as an essential step towards developing early personalized treatment plans for children with autism spectrum disorder

    Early assessment of lung function in coronavirus patients using invariant markers from chest X-rays images

    Get PDF
    The primary goal of this manuscript is to develop a computer assisted diagnostic (CAD) system to assess pulmonary function and risk of mortality in patients with coronavirus disease 2019 (COVID-19). The CAD system processes chest X-ray data and provides accurate, objective imaging markers to assist in the determination of patients with a higher risk of death and thus are more likely to require mechanical ventilation and/or more intensive clinical care.To obtain an accurate stochastic model that has the ability to detect the severity of lung infection, we develop a second-order Markov-Gibbs random field (MGRF) invariant under rigid transformation (translation or rotation of the image) as well as scale (i.e., pixel size). The parameters of the MGRF model are learned automatically, given a training set of X-ray images with affected lung regions labeled. An X-ray input to the system undergoes pre-processing to correct for non-uniformity of illumination and to delimit the boundary of the lung, using either a fully-automated segmentation routine or manual delineation provided by the radiologist, prior to the diagnosis. The steps of the proposed methodology are: (i) estimate the Gibbs energy at several different radii to describe the inhomogeneity in lung infection; (ii) compute the cumulative distribution function (CDF) as a new representation to describe the local inhomogeneity in the infected region of lung; and (iii) input the CDFs to a new neural network-based fusion system to determine whether the severity of lung infection is low or high. This approach is tested on 200 clinical X-rays from 200 COVID-19 positive patients, 100 of whom died and 100 who recovered using multiple training/testing processes including leave-one-subject-out (LOSO), tenfold, fourfold, and twofold cross-validation tests. The Gibbs energy for lung pathology was estimated at three concentric rings of increasing radii. The accuracy and Dice similarity coefficient (DSC) of the system steadily improved as the radius increased. The overall CAD system combined the estimated Gibbs energy information from all radii and achieved a sensitivity, specificity, accuracy, and DSC of 100%, 97% ± 3%, 98% ± 2%, and 98% ± 2%, respectively, by twofold cross validation. Alternative classification algorithms, including support vector machine, random forest, naive Bayes classifier, K-nearest neighbors, and decision trees all produced inferior results compared to the proposed neural network used in this CAD system. The experiments demonstrate the feasibility of the proposed system as a novel tool to objectively assess disease severity and predict mortality in COVID-19 patients. The proposed tool can assist physicians to determine which patients might require more intensive clinical care, such a mechanical respiratory support

    EMT Markers in Locally-Advanced Prostate Cancer: Predicting Recurrence?

    Get PDF
    Background: Prostate cancer (PCa) is the second most frequent cause of cancer-related death in men worldwide. It is a heterogeneous disease at molecular and clinical levels which makes its prognosis and treatment outcome hard to predict. The epithelial-to-mesenchymal transition (EMT) marks a key step in the invasion and malignant progression of PCa. We sought to assess the co-expression of epithelial cytokeratin 8 (CK8) and mesenchymal vimentin (Vim) in locally-advanced PCa as indicators of EMT and consequently predictors of the progression status of the disease.Methods: Co-expression of CK8 and Vim was evaluated by immunofluorescence (IF) on paraffin-embedded tissue sections of 122 patients with PCa who underwent radical prostatectomies between 1998 and 2016 at the American University of Beirut Medical Center (AUBMC). EMT score was calculated accordingly and then correlated with the patients' clinicopathological parameters and PSA failure.Results: The co-expression of CK8/Vim (EMT score), was associated with increasing Gleason group. A highly significant linear association was detected wherein higher Gleason group was associated with higher mean EMT score. In addition, the median estimated biochemical recurrence-free survival for patients with < 25% EMT score was almost double that of patients with more than 25%. The validity of this score for prediction of prognosis was further demonstrated using cox regression model. Our data also confirmed that the EMT score can predict PSA failure irrespective of Gleason group, pathological stage, or surgical margins.Conclusion: This study suggests that assessment of molecular markers of EMT, particularly CK8 and Vim, in radical prostatectomy specimens, in addition to conventional clinicopathological prognostic parameters, can aid in the development of a novel system for predicting the prognosis of locally-advanced PCa
    • …
    corecore